

Page 1

Morse Game by M0KUK

Using microprocessors opens a new ability to easily create and modify the tool to

provide bespoke solution. Morse code is very popular with amateur radio

enthusiasts for its ability to provide sustainable means of communication even in

times of weaker propagation. It is also a great way for those who like building their

rigs as the construction of the transceiver can be much simpler than in case of

voice modes.

About Two Hours

Kit List

• Arduino board (e.g. Arduino Uno or Nano)

• Buzzer or a small speaker

• Jumper/dupont wires

• Computer with Arduino IDE

• Breadboard (optional)

Instructions

If you don’t have Arduino IDE please download and install it. Latest version is available on the Arduino

webpage: https://www.arduino.cc/en/software or you can use Arduino Web Editor available from the same

link.

For this example, we will be using Arduino Uno board, but any other board can be used. Please remember

to adjust the pins to the board that you are using as this might be different.

You should be able to upload your sketch after a few steps to test it out and experiment with it.

Page 2 of 6

Below listings aim on explaining critical parts of the code, however there will be some elements that were

omitted in this document to make it easier to read. Feel free to refer to the Morse Game. ino file available

here: https://github.com/M0KUK/MorseGenerator/blob/master/MorseGame.ino

1. Connect Buzzer (positive) to Arduino Uno to pin 8 and negative to ground (GND)
2. Open Arduino IDE and start new project
3. Start by defining connections (top of the file), tone and morse speed (length of dots and dashes or dits

and dahs)

4. Let’s start with Morse version of ‘Hello World!’ calling CQ that is used to start communication. In setup
section that starts with void setup() we need to play a tone, wait for the duration of dit or dah, make a
short pause. Letter ‘C’ in morse is - . - . (dah, dit, dah, dit) and letter ‘Q’ is - - . - (dah, dah, dit, dah). So
our code will look like this:

Please note that within one character there is a slight delay of 1 dot between each dot or dah. And to mark

end of each letter there is a longer pause equal to 1 dash (or 3 dots). Even though it’s not used in this

example after a full word we use longer pause of 3 dashes.

5. At this point you should be able to upload your sketch after connecting Arduino board to USB.

const int buzzerPin = 8; //defines pin that buzzer is connected to

const int morseTone = 600; //defines the tone for the morse sound

const int ditLength = 100; //dot length in milliseconds

const int dahLength = 3 * ditLength; //dash length in miliseconds (3x dot length)

// Play CQ

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

delay(ditLength);

tone(buzzerPin, morseTone,

ditLength); delay(ditLength);

delay(ditLength);

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

delay(ditLength);

tone(buzzerPin, morseTone,

ditLength); delay(ditLength);

delay(dahLength); // end of character

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

delay(ditLength);

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

delay(ditLength);

tone(buzzerPin, morseTone,

ditLength); delay(ditLength);

delay(ditLength);

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

delay(dahLength);

https://github.com/M0KUK/MorseGenerator/blob/master/MorseGame.ino

Page 3 of 6

6. To make the code easier to read let’s create a procedure to play dit and a procedure to play dah. To
create a procedure we use command void with a name of the procedure. In our example we will create:

7. To use them we simply can type ditPlay() or dahPlay() what will simplify setup section of code to:

8. Further improvement can be achieved by mapping all letters arguments in our case accepts letter that we

want to play: void playCharacter(char letterToPlay)

void ditPlay(){

tone(buzzerPin, morseTone,

ditLength); delay(ditLength);

}

void dahPlay(){

tone(buzzerPin, morseTone,

dahLength); delay(dahLength);

}

void setup() {

// Play CQ

dahPlay();

delay(ditLength)

; ditPlay();

delay(ditLength)

; dahPlay();

delay(ditLength)

; ditPlay();

delay(dahLength); //end of character

dahPlay();

delay(ditLength)

; dahPlay();

delay(ditLength)

; ditPlay();

delay(ditLength)

; dahPlay();

delay(ditLength)

;

}

Page 4 of 6

We also used one more procedure to help us with the code:

and we used one more variable (array) to store all the letters in alphabetic order to be able to ‘translate’ letter

to Morse code:

That allows us to have clear and readable lines in setup:

9. Now we can use loop() section of the script for running a part of our program indefinitely. We can start

with simple part generating a random letter, playing it and then waiting before playing a new character

void playCharacter(char letterToPlay){

String toPlay = morseCode[letterToPlay- ASCII_START]; //selecting right

character for (byte i = 0; i < toPlay.length(); i++) //looping through all dits and

dahs

{

play(toPlay[i]);

delay(ditLength);

}

}

void play(char

whatToPlay){ if

(whatToPlay == ‘-’){

dahPlay();

}

else if (whatToPlay ==

‘.’){ ditPlay();

}

}

const String morseCode[] = {

“.-”, “-...”, “-.-.”, “-..”, “.”, “..-.”, “--.”, “....”, “..”, “.---”, “-.-”, “.-..”, “--”, “-.”, “---”, “.--.”, “--.-”, “.-

.”, “...”, “-”, “..-”, “...-”, “.--”, “-..-”, “-.--”, “--..”

};

void setup() {

// Play CQ

playCharacter(‘C’);

delay(dahLength); //end of character

playCharacter(‘Q’);

}

Page 5 of 6

10. We could stop here and have a nice Morse tutor, but let’s try to make it more interesting by adding the

ability to provide the ‘guess’ of the heard letter. To achieve it we will use Serial monitor that will wait for
keyboard input and allow us to communicate back to the user if the guess is correct or not. If it’s former
then the Congrats message will be shown and new letter will be played after a short pause. In the latter
scenario the same letter will be played

void loop() {

//Play random character

char randomLetter = random(NUMBER_OF_LETTERS) + ASCII_START;

playCharacter(randomLetter);

delay(dahLength);

delay(WAIT_TIME);

}

void loop() {

//Play random character

char randomLetter = random(NUMBER_OF_LETTERS) + ASCII_START;

playCharacter(randomLetter);

delay(dahLength);

while (guessLetter !=

randomLetter){ if

(Serial.available()){

guessLetter = Serial.read();

//Condition to make all characters uppercase

if (guessLetter >= ASCII_LOWER_A && guessLetter <= ASCII_LOWER_Z){

guessLetter = guessLetter - ASCII_LOWER_TO_UPPER;

}

//Presenting error message and replaying a

character if (guessLetter != randomLetter){

Serial.println(“Not quite right. Try again!”);

playCharacter(randomLetter);

delay(dahLength);

}

}

}

Serial.println(“That’s right! Congratulations”);

delay(WAIT_TIME);

}

Page 6 of 6

Next Steps

• Try changing the tone and length of the sound

• Try adding numbers

• Try adding a switch to practice sending Morse

• Try adding more than one character, Q-Code or a random call sign.

More Information

• Full code can be found here: https://github.com/M0KUK/MorseGenerator/blob/master/MorseGame.ino

• Additional Arduino resources and examples are available here: https://www.arduino.cc/reference/en

https://github.com/M0KUK/MorseGenerator/blob/master/MorseGame.ino
https://www.arduino.cc/reference/en

